

LECTURE SCHEDULE FOR ELECTROMAGNETIC FIELDS

NAME OF THE FACULTY:	YEAR/SEM:	II/I
DESIGNATION: ASSISTANT PROFESSOR	ACADEMIC YEAR:	2023-24
BRANCH: EEE	REGULATION:	R-20
DEPARTMENT: ELECTRICAL AND ELECTRONICS ENGINEERING	SUBJECT CODE:	

Course Outcomes:

CO1:Compute electric fields and potentials using Gauss law or solve Laplace's or Poisson's equations for various electric charge distributions.

CO2:Calculate the capacitance and energy stored in dielectrics.

CO3:Calculate the magnetic field intensity due to current carrying conductor and understanding the application of Ampere's law, Maxwell's second and third law.

CO4:Estimate self and mutual inductances and the energy stored in the magnetic field. **CO5:**Understand the concepts of displacement current and Poynting theorem and Poynting vector

Unit No	Corse outcomes	Name of the Topic	Text books/ Reference books	No. of classes required	Mode of teaching	
Electrostatics						
		INTRODUCTION		1		
	601 6	Electrostatic Fields – Coulomb's Law		1	CHALK AND TALK	
	electric fields	Electric Field Intensity (EFI)		1		
	and potentials	EFI due to a line and a surface charge		2		
	using Gauss law or solve Laplace's or Poisson's equations for various electric charge distributions.	Work done in moving a point charge in an electrostatic field	T1/R4	2		
I		Electric Potential – Properties of potential function		2		
		Potential gradient – Guass's law		1		
		Maxwell's first law, div (D)=pv		1		
		Laplace's and Poison's equations		1		
			Solution of Laplace's equation in one variable		1	
	TOTAL			13		
Conductors – Dielectrics and Capacitance						
	CO2: Calculate the capacitance and energy stored in dielectrics.	INTRODUCTION	_	1		
		Electric dipole – Dipole moment	T1/R4	1		
II		Potential and EFI due to an electric dipole		1		
		Torque on an Electric dipole in an electric field		1		

		Behaviour of conductors in an electric field		1		
		Conductors and Insulators		1	CHALK	
		Polarization		1	AND	
		Boundary conditions between conduction to Dielectric and dielectric to dielectrics capacitance		TA		
		Capacitance of parallel plates, spherical and coaxial cables with composite dielectrics		1		
		Energy stored and energy density in a static electric field		1		
		Current density,Conduction and Convection current densities		1		
		Ohm's law in point form – Equation of continuity		1		
		TOTAL		12		
	Magneto	o statics and Ampere's Law,Force in	n Magnetic	: fields		
	-	INTRODUCTION		1		
		Static magnetic fields		1		
		Biot-Savart's law,Oesterd's experiment		1		
		Magnetic field intensity (MFI) – MFI due to		1		
		a straight current carrying filament		1		
		MFI due to circular, square and solenoid current		1		
		Carrying wire ,Relation between magnetic flux		1		
		magnetic flux density and MFI		1		
	CO3:Calculate	Maxwell's second Equation, div(B)=0		1		
	the magnetic	Ampere's circuital law and its applications		1		
	field intensity due to current	MFI due to an infinite sheet of current and a long filament carrying conductor		1		
	conductor and understanding the application	Point form of Ampere's circuital law		1		
III		Field due to a circular loop, rectangular and square loops	T1/R4	1	AND TALK	
	of Ampere's law,	Maxwell's third equation, Curl (H)=J		1		
	Maxwell's	Magnetic force		1		
	third law.	Moving charges in a Magnetic field		1		
		Lorentz force equation – force on a current element in a magnetic field		1		
		Force on a straight and a long current carrying conductor in a magnetic field		1		
		Force between two straight long and parallel current carrying conductors		1		
		Magnetic dipole and dipole moment		1		
		A differential current loop as a magnetic dipole		1		

		TOTAL		21		
		Self and Mutual inductance	9			
		INTRODUCTION		1		
		Self and Mutual inductance		2		
		Determination of self-inductance of a solenoid		1		
	CO4: Estimate	Determination of self-inductance of a toroid	Ī	1		
IV	self and mutual inductances and	Mutual inductance between a straight long wire	T1/R4	1	CHALK	
	stored in the magnetic field.	Mutual inductance between a square loop wire in the same plane		1	AND TALK	
		Energy stored in a magnetic field		1		
		Density in a magnetic field		1		
		REVISION		1		
		TEST		1		
TOTAL				11		
		Time Varying Fields				
		INTRODUCTION		1		
		Time varying fields – Faraday's laws of electromagnetic induction – Its integral and point forms		2		
	the concepts of	Maxwell's fourth equation, Curl (E)= $-\partial B/\partial t$		1		
	displacement	Statically and Dynamically induced EMFs		2	СНЛГК	
V	current and	Simple problems	T1/R4	2		
	Poynting theorem and	Modification of Maxwell's equations for time varying fields		1	TALK	
	Poynting vector.	Displacement current		1		
		Poynting Theorem and Poynting vector.		1		
		REVISION		1		
		TEST		1		
		TOTAL		13		
	G	RAND TOTAL		70		

Course-PO Attainment for Electro Magnetic Fields												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	3		3		3	3
CO2	3	3		3	2	2	2		3		3	3
CO3	3	3	3	3	2	3	3		3		3	2
CO4	3	3	3	3	2	3	2		2		2	3
CO5	3	3		2	2	2	3		3		3	2

S.NO	GRADUATE ATTRIBUTION	ACTION VERBS	LEVEL
1	ENGINEERING KNOWLEDGE	APPLY	K3
2	PROBLEM ANALYSIS	ANALYZING	K4
3	DESIGN DEVELOPMENT OF SOLUTIONS	UNDERSTANDING	K2
4	INVESTIGATION OF COMPLEX PROBLEMS	APPLY	K3
5	MODERN TOOL USAGE	UNDERSTANDING	K2
6	ENGINEER AND SOCIETY	UNDERSTANDING	K2
7	ENVIRONMENT AND SUSTAINABILITY	UNDERSTANDING	K2
8	ETHICS		
9	INDIVIDUALS AND TEAM WORK	APPLY	K3
10	COMMUNICATION		
11	PROJECT MANAGEMENT AND FINANCE	APPLY	K3
12	LIFE LONG LEARNING	APPLY	K3

Text Books:

1. "Engineering Electromagnetics" by William H. Hayt & John. A. Buck Mc. Graw-Hill,7th Editon.2006.

2. "Principles of Electro Magnetics" by Sadiku, Oxford Publications, 6th edition, 2015.

Reference Books:

1. Introduction to Electro Dynamics by D J Griffiths, Prentice-Hall of India Pvt. Ltd,2nd edition

2. Electromagnetic Field Theory by Yaduvir Singh, Pearson India, 1st edition, 2011.

3. Fundamentals of Engineering Electro magnetics by Sunil Bhooshan, Oxford University Press, 2012

4. Electro magnetics by Joseph A. Edminister, Schaum's Outline,4th Edition,2014.

		Name	Signature with Date
i.	Faculty	Mr. VARAPRASAD K S B	
ii.	Course Coordinator		

HOD

PRINCIPAL